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Quadrupole-mode transfer function and the nonlinear Mathieu instability

Weiming Guo* and S. Y. Lee
Indiana University, Bloomington, Indiana 47408

~Received 23 February 2002; published 19 June 2002!

We show that the quadrupole-mode transfer function~QTF! is a powerful nondestructive tool to measure
properties of dynamical systems. In particular, we discuss the feasibility of using the QTF to measure the
betatron tunes and the beam emittances with a beam-position monitor system. The QTF can also be used to
compensate the optical mismatch during the beam injection process. However, it is less effective than the rf
dipole method in overcoming the intrinsic spin resonances for polarized beam acceleration.
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I. INTRODUCTION

The parametric resonances of dynamical systems h
been studied extensively in the past. It is a powerful too
characterizing chaos and properties of many dynamical
tems@1#. Naturally, it has many applications in the physics
beams. For example, the parametric resonances in the lo
tudinal phase space induced by rf cavity voltage and ph
modulations have been employed to manipulate beam bu
for various applications@2,3#. The rf cavity phase modulation
induces dipole-mode oscillations of the beam bunch in
synchrotron phase space, and thus it may be used to act
compensate the synchro-betatron coupling resonances@4#. It
can also be used to create a bounded chaotic region in
longitudinal phase space for a controlled bunch dilution@5#.
The rf cavity voltage modulation at the second synchrot
sideband has also been applied to alleviate the coupled b
instability driven by the parasitic modes@6#, and to manipu-
late bunch shape for bunch length compression@7#.

The idea of bunch manipulation has recently been
tended to the transverse phase space, where the coh
dipole-mode excitation driven by a transverse rf dipole fi
has been successfully applied to overcome intrinsic s
resonances at the alternating-gradient synchrotron~AGS! @8#.
The rf dipole, excited adiabatically, changes the beam clo
orbit without changing the phase-space area. Since the
herent betatron oscillation amplitude vs the rf dipole mod
lation tune is well known, one can use this method to m
sure the betatron tune without suffering emittance dilut
@8#. However, a coherent betatron dipole-mode oscillat
can change the betatron tune that one is measuring. This
produce additional uncertainty in the determination of
betatron tune.

With advanced data analysis techniques, the dipole-m
transfer function can be used to reveal hidden dynam
variables in many complicated dynamical systems. Som
these data analysis techniques are the orbit response m
method @9#, and the model independent analysis meth
@10#. Both techniques have been successfully implemente
improving the performance of high intensity accelerators

On the other hand, the power of quadrupole-mode tran
function has not been explored. There is only a limited stu
on beam dynamics for a time dependent transverse qua
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pole field. A fast field-changing quadrupole can be used
produce betatron tune jump for overcoming intrinsic sp
resonances@11,12#, and for studying a strong betatron res
nance@13#. Similarly, a harmonic tune modulation can b
used to study the effect of enhanced-diffusion process
betatron resonance@14#. This paper studies physics of
transverse quadrupole-mode transfer function and its ap
cations, and the corresponding dynamical systems assoc
with the nonlinear Mathieu instability.

We organize this paper as follows. In Sec. II, the effect
Hamiltonian in the presence of an rf quadrupole is review
where the stable and unstable fixed points are discussed.
tion III examines some applications of rf quadrupole-mo
transfer function, such as measuring the beam emittance
the betatron tune by using an rf quadrupole and the qua
pole beam-transfer function of beam-position moni
~BPM!, compensating the injection mismatch with rf quadr
poles, and overcoming the intrinsic spin resonances with
herent quadrupole excitation. The conclusion is given in S
VI. Properties of the nonlinear Mathieu instability and th
strength of the quadrupole-mode transfer function for
Boltzmann beam distribution are discussed in the App
dixes.

II. BEAM DYNAMICS WITH rf QUADRUPOLES

In the Frenet-Serret coordinate system, the Hamilton
for particle motion in the transverse phase-space coordina
in the presence of rf quadrupoles, is@15#

H5
1

2
y821

1

2
Ky~s!y21

1

2
K rf~s!y2 cos~vmt1u0!, ~1!

wherey,y8 are phase-space coordinates representing e
the horizontal or vertical phase space,Ky(s)5B1(s)/(Br) is
the designed quadrupole strength of the accelerator lat
B1(s)5]Bz /]x is the gradient function of the vertical mag
netic flux density,K rf(s)5B1,rf(s)/(Br) is the strength of rf
quadrupole,Br is the magnetic rigidity of the beam,s is the
longitudinal coordinate,vm is the modulation angular fre
quency, andu0 is the initial phase angle of the rf quadrupol
Transforming the phase-space coordinate to the action-a
variables, one obtains an effective Hamiltonian near beta
sideband as~see the Appendix A and Ref.@15#!

H~Jy ,fy!'nyJy1JyC1 cos~2fy2nu2nmu1x!, ~2!
©2002 The American Physical Society05-1
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where we assume that the modulation tunenm5vm/v0 is
near a quadrupole betatron sidebandu2ny2nu andv0 is the
angular revolution frequency of the beam. The Hamilton
tori will be resonantly deformed.

A. Linear Mathieu instability

We transform the Hamiltonian~2! into a resonance rotat-
ing frameby using the generating functionF25(fy2 1

2 nu
2 1

2 nmu1x)J to obtain a new Hamiltonian:

H~c,I !5dI 1C1I cos 2c, ~3!

where I 5J, c5fy2 1
2 nu2 1

2 nmu1x, and d5uny2 1
2 nu

2 1
2 nm is called theresonance proximity parameter. Since

the Hamiltonian~3! is time (u) independent, the Hamiltonia
is a constant of motion. It is equivalent to take the Poinc´
surface of section at every 1/nm turns.

In the region of2uC1u<d<1uC1u, the beam encounter
the linear Mathieu instability driven by the rf quadrupol
The Hamiltonian~3! is stable whenudu.uC1u. Introducing
the normalized coordinates:X5A2I cosc and P5
2A2I sinc, the Hamiltonian is transformed to

H5
1

2
~d1C1!X21

1

2
~d2C1!P2. ~4!

A torus associated with a constant Hamiltonian value is
liptical, and the fixed stable point is located at the origin w
I sfp50, or Xsfp5Psfp50. The aspect ratio of the ellipse

Au(d1C1)/(d2C1)u. Adjusting thed or C1 parameters, one
can adjust the shape of admittance ellipse, and thus th
quadrupole can be used to compensate injection misma

B. Nonlinear Mathieu instability

When a detuning term is included, e.g., in the presenc
octupole magnets, the Hamiltonian becomes

H5dI 1C1I cos 2c1
1

2
ayyI

2, ~5!

where we neglect effects of higher order nonlinear re
nances. The nonlinear detuning parameterayy may arise
from the space charge force, the concatenating effects of
tupoles, and other higher order multipoles. For example,
detuning parameter due to an octupole isayy

5(1/16p)r(B3 /Br)by
2ds, whereB35]3Bz /]x3 is the octu-

pole field strength.
Fixed points can be obtained from the Hamiltonian

equation:İ 50 and ċ50, where the overdot represents t
time derivative. The general property of the Hamiltonian~5!
is discussed in Appendix B. It depends only on two indep
dent parameters:D5d/ayy and c152C1 /ayy . For ex-
ample, ifayy,0 andC1.0, the stable fixed points are give
by

I sfp5H 2
1

ayy
~d1C1! if d.2C1,

0 if d.C1 and d,2C1,

~6!
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with csfp50 andp. The corresponding unstable fixed poin
are located at

I ufp5H 2
1

ayy
~d2C1! if d.C1,

0 if 2C1,d,C1,

~7!

with cufp5p/2 and 3p/2. The top-left plot of Fig. 1 shows
the action of the fixed points vs the parameterD for a pa-
rameterc150.10 mm~see Appendix B!. The plots labeled
~1!, ~2!, and ~3! correspond to the parameters marked w
the vertical long-dashed lines 1, 2, and 3 respectively. N
that the region~1! is below the bifurcation threshold and th
phase space is bifurcated into two islands in region~2! and
three islands in region~3!.

III. APPLICATIONS OF RF QUADRUPOLE-MODE
TRANSFER FUNCTION

A. Emittance and tune measurement

It was first pointed out by Miller that the signal from
BPM can be used to derive the beam moments@16#, and thus
the beam emittance can be determined@17#. There were con-
siderable efforts to measure emittance using BPMs in lin
@18#. Application of this idea to storage ring has not be
fully successful because the rms signal derived from a B
is weak and the rms beamwidth cannot easily be modified
a quadrupole@19#. Here we present an idea in enhancing t
weak rms signal for the measurement of emittance by th
quadrupole-mode transfer function, and we carry out num
cal simulation to justify our claims.

The induced surface charge density on a conducting
inder by an infinitely long line charge is

FIG. 1. Top left: stable~solid line! and unstable~short dashed
line! fixed points vs the effective resonance proximity parame
D5d/ayy for the effective resonance strength parameterc1

50.10 mm. The plots labeled~1!, ~2!, and ~3! correspond to the
vertical long-dashed lines marked as 1, 2, and 3, respectively.
Hamiltonian isH5DI 2c1I cos 2c1

1
2I

2 with X5A2I cosc and P
52A2I sinc.
5-2
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s~r ,f,a,Q!5
l

2pa

a22r 2

a21r 222ar cos~Q2f!

5
l

2pa F112(
i 51

` S r

aD k

cosk~Q2f!G , ~8!

wherel5NBe/(A2pss) is the line-charge density,e is the
charge of the orbiting particle,NB is the number of particles
in a bunch,ss is the rms bunch length, (r ,f) is the location
of the line charge in cylindrical coordinate system, (a,Q) is
the position on the conducting cylinder with radiusa. We
expand the induced surface charge density in power serie
r /a because the radiusr of the charge particle is muc
smaller than the BPM chamber radiusa. Let the beam dis-
tribution function ber(x,x8,z,z8), where (x,x8) and (z,z8)
are the transverse phase-space coordinates of betatron
tion. The distribution function is normalized b
*r(x,x8,z,z8)dxdx8dzdz851. The induced surface densit
on the cylinder becomes

s~a,Q!5E s~x,z,a,Q!r~x,x8,z,z8!dxdzdx8dz8

5
l

2pa H 112
^x&
a

cosQ12
^z&
a

sinQ

12S ^x2&2^z2&

a2 D cos 2Q14
^xz&

a2
sin 2Q1•••J .

~9!

When an rf quadrupole is adiabatically turned on, wh
the modulation tune is near a betatron quadrupole-m
sideband, the bunch distribution will follow the invariant e
lipse shown in Eq.~4!, and the ellipse rotates at a tune
nm/2. The rms beamwidth becomes

^x2&5^x&21
1

2
~^X2&1^Px

2&!1
1

2
~^X2&2^Px

2&!sinnmu,

~10!

where X5A2bxI x coscx and Px52A2bxI x sincx are the
normalized betatron phase-space coordinates. A quadru
pickup will see a dominant harmonic ofnm, i.e.,

q25

s~a,0!1s~a,p!2sS a,
p

2 D2sS a,
3p

2 D
s~a,0!1s~a,p!1sS a,

p

2 D1sS a,
3p

2 D
5

1

a2
~b01b1 cosnmu!, ~11!

where

b052~^x&22^z&22^z2&!1^X2&1^Px
2&, ~12!

b15^X2&2^Px
2&, ~13!
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andA^z2& is the rms beamwidth inz direction. Although the
dc componentb0 of the quadrupole momentsq2 is much
larger than the modulation termb1, the coefficientb1 can,
however, be accurately determined by a Fourier transfor
tion of the quadrupole pickup. Here the coefficientb1 is
called the quadrupole-mode transfer function.

First, we consider a linear system without nonlinear be
tron detuning. The stability condition for the linear Mathie
equation isudu.uC1u. The quadrupole-mode transfer fun
tion b1 becomes~see Appendix C!

b15
2C1bxe0

Ad22C1
2

, ~14!

wherebx is the betatron amplitude function at the location
the quadrupole-mode monitor.

Measurement of theb1 coefficient vs the machine param
eterd5unx2 1

2 nu2 1
2 nm ~by varyingnm) can be used to de

termine the emittancee0. This provides a powerful experi
mental method to measure the beam emittance. Figur
shows the rms quadrupole moment as a function of revo
tion turns from an example of multiparticle simulatio
where a sample of 10 000 particles is initially distributed
Gaussian distribution and the evolution of the distribution
governed by a one-turn linear map, an rf quadrupole ki
and a thin lens octupole kick. The strength of the rf quad
pole increases adiabatically in the first 1000 turns, while
modulation tune is maintained at a constant value, and
quadrupole moment,̂x2&2^x&2, is measured from 2001 to
4000 turns. The coefficientb1 is obtained by a Fourier analy
sis of the quadrupole moment data.

Figure 3 shows the parameterd2 vs the derived Fourier
amplitude 1/b1

2 from data of multiparticle simulations with

FIG. 2. Top: the second moment (^x2&2^x&2) derived from nu-
merical simulation with parametersd50.0025, C150.0005, ny

58.7, andnm50.395. Bottom: fast Fourier transform~FFT! spec-
trum of the second moment, where we obtainb053.405
31025 m2 and b156.731026 m2. Note thatb0 and b1 are de-
fined as twice the Fourier amplitude.
5-3
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WEIMING GUO AND S. Y. LEE PHYSICAL REVIEW E65 066505
an initial emittance 1.0p mm mrad andC150.0005. Using
Eq. ~14!, one can deduce emittance from the graph ofd2 vs
1/b1

2 to be 0.97p mm mrad. We note that, indeed, the cur
is linear for the linear betatron system, and the slope can
used to derive the emittance quite accurately. The interc
of the line with the vertical axis atd5C1 can be used to
determine the betatron tune.

In a realistic machine experiment, the accuracy ofb1 can
be increased by increasing the number of measurement t
Naturally, the number of data point is also limited by t
machine stability, such as the tune stability, effects of be
beat, etc., and the available memory of the data record
hardware.

Equation~14! is valid only for a linear betatron motion
However, Fig. 3 shows thatd2 vs 1/b1

2 derived from numeri-
cal simulations for nonzero detuning parameter follows
family of nearly linear curves. The slope is reduced even
the same initial emittance. Appendix C discusses the effec
nonlinear detuning parameter on the beam distribution,
derives theb1 coefficient for the Boltzmann beam distribu
tion. We show that the slope is indeed reduced due to
nonlinear detuning parameter. Nevertheless, we can also
rive the beam emittance and the tune of the dynamical
tem by using a phenomenological ansatz:

b15
2C1bxe0

A~d1Faxxe0!22C1
2

, ~15!

where the nonlinear detuning coefficientaxx can be accu-
rately measured by using the method proposed in Ref.@20#.
The derived emittance agrees well with the input emitta
as shown in Fig. 4 withF'2.560.2 for both Gaussian an

FIG. 3. Data obtained from a Fourier analysis of numeri
simulations. The parameterd2 is plotted as a function of 1/b1

2. The
parameters areC150.0005 with ayy50, 2100, 2200, 2400,
2800, and21000 m21, respectively, in different symbols from
the leftmost to the rightmost. The straight line is shown to guide
eyes. The data are fitted to obtain the beam emittance. The i
rms beam emittance of all simulations is 1p mm mrad, and the
betatron amplitude function is 16.7 m.
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uniform distributions. Exact expression for theb1 coefficient
for a Boltzmann distribution is derived in Appendix C.

For an actual beam-emittance measurement, the mac
operation condition should be set such that it stays aw
from the nonlinear Mathieu bifurcation region, i.e., in th
region ~1! of Fig. 1. The procedure to measure beam em
tance in a storage ring goes as follows:~1! Minimize the
linear coupling, and measure the nonlinear detuning par
eteraxx ; ~2! Determine the rf quadrupole strengthC1, using
the method derived in Appendix A;~3! Measure the quadru
pole transfer functionb1 as a function of the modulation tun
nm ~or the resonance proximity parameterd); ~4! Use the
measured data ofb1 vs d to determine the emittance. Th
parameterC1 depends on the strength of the rf quadrupo
field and the value of the betatron amplitude function.
should not be too large to cause large betatron-function
turbation.

B. Mismatch correction

Optical mismatch during the injection can cause u
wanted emittance dilution. Let the acceptance ellipse at
injection point of a synchrotron be

gy212ayy81by825e0 , ~16!

wherea,b,g are the Courant-Snyder parameters of a s
chrotron. The injection ellipse is

g1y212a1yy81b1y825e0 ~17!

for a mismatched injection optics, wherea1 ,b1 ,g1 are the
Courant-Snyder parameters from the injection line. Tra

l

e
ut

FIG. 4. Comparison between the measured emittance (eo from
numerical simulation data! and the initial input emittance (e i hori-
zontal axis!. A total of 150 sets of numerical simulation data wi
different machine parameters (C1 ranging from 0.0005 to 0.005
andaxx ranging from 0 to21000 m21) and different initial beam
distribution functions@Gaussian~circles! and uniform~diamonds!#
are included in this plot for comparison. The spread arises es
tially from the nonlinear detuning, and the strength of theC1

parameter.
5-4
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QUADRUPOLE-MODE TRANSFER FUNCTION AND THE . . . PHYSICAL REVIEW E 65 066505
forming the injection ellipse into the normalized phase sp
of the ring optics withY5(1/Ab)y and P5(1/Ab)(by8
1ay), we find

a1Y21a2Y P1a3P25e0 , ~18!

where a15b/b11(a1b2b1a)2/bb1 , a252a1b2ab1 /
b, anda35b1 /b. The major and minor axes of the ellips
are given by F15(Fmm1AFmm

2 21)1/2 and F25(Fmm

2AFmm
2 21)1/2, where the mismatch factorFmm is

Fmm5
1

2
~g1b1b1g22a1a!. ~19!

The mismatch angle between the major axis andY axis is

cmm5
1

2
arctanS a2

a32a1
D . ~20!

The ellipse of the mismatched injection beam will rota
because of the betatron motion. If the betatron motion w
linear, the injection ellipse would rotate forever witho
emittance dilution. In the presence of nonlinear detuning,
bunch will filament and fill an area ofpF1

2 . The rms emit-
tance of this diluted beam depends on the particle distr
tion, and the rms emittance dilution factor is approximat
Fmm.

1. Mismatch compensation for linear systems

Since the invariant torus is naturally elliptical when the
quadrupole is modulating atnm'u2ny2nu, the torus can be
used to compensate the mismatch. In other words, the ad
tance ellipse can be adjusted by an rf quadrupole such th
matches the injected beam. Note that if the injected bea
off-center, additional dipole is needed to compensate
closed orbit, i.e., the rf quadrupole can only modify t
Courant-Snyder parameters.

To match the ellipses, we need to adjust the shape
orientation of the acceptance ellipse. When the rf quadrup
is located at the injection point, the match conditions are

C1

d
5

F1
2 2F2

2

F1
2 1F2

2
~21!

and

u05H ~p22cmm!/nm for d.0,

u052cmm/nm for d,0,
~22!

wherecmm, F1 , andF2 are mismatch phase and factor
andu0 is the rf quadrupole initial phase angle. If the rf qua
rupole is not located at the injection point, the phase diff
ence between the rf quadrupole and the injection po
should be added to or subtracted fromcmm. After the beam
injection, we can adiabatically turn off the rf quadrupole.

Figure 5 shows the evolution of an injection ellipse in
numerical simulation where the betatron functions for
acceptance ellipse area51.5, b516.692 m, and g
50.1947 m21, and the betatron amplitude functions of th
injection ellipse are a151.4, b1512.6 m, and g1
06650
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50.235 m21. The corresponding mismatch factors a
Fmm51.087 28,F151.2305, andF250.812 68. The mis-
matched ellipse at the first-turn is snapped by the elli
induced by an additional rf quadrupole, where the parame
for the rf quadrupole ared50.01, C150.003 808 7, andu0
51.056 49. The rf quadrupole is adiabatically turned
from 2000 to 3000 turns. The ellipses at injection~0th turn!,
at 1000th turn, and 3000th turn are shown in Fig. 5. T
beam ellipses can be perfectly matched by an rf quadrup

2. Mismatch compensation employing nonlinear Mathieu
instability island

In many accelerators, the nonlinear betatron detun
terms are unavoidable. The method discussed in the pre
ing section can still be applied in the parametric region~1! of
Fig. 1. However, we can also use the nonlinear Mathieu
stability island in region~3! of Fig. 1 for mismatch compen
sation. Appendix B discusses the general properties of
nonlinear Mathieu Hamiltonian. Figure 6 shows an exam
of the phase-space ellipse for a nonlinear Mathieu Ham
tonian ~5! with parametersd50.02, C150.007 464, and
ayy52100 m21. The Hamiltonian values of these tori ar

FIG. 5. The mismatched beam ellipse withI 5I 0 at the injection
~0th turn! is captured by an rf quadrupole, and the rf quadrup
strength is adiabatically turned off to restore the matched be
condition at the 3000th turn. The beam ellipse at the 1000th tur
also shown for reference.

FIG. 6. Left: the invariant tori of the nonlinear Mathie
Hamiltonian with parameters: d50.02,C150.007 464, ayy

52100 m21. Right: the ratioAI max/I min as a function of the
phase-space area of invariant tori inside the middle island.
5-5
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WEIMING GUO AND S. Y. LEE PHYSICAL REVIEW E65 066505
H158.2731028 m and Hsfp57.8631027 m. The invari-
ant torus rotates in the phase space at a tune ofnm/2.

To achieve mismatch compensation, the phase-space
of an ellipse enclosed by the separatrix torus must be la
than the phase-space area of the injected beam, and th
pect ratio must be equal. The actionI of a given torus at a
constantH is

I 5
1

ayy
@2~d1C1 cos 2c!1A~d1C1 cos 2c!212ayyH#

~23!

for the inner island~see the left plot of Fig. 6!. The aspect
ratio of a torus is

I c5p/2

I c50
5

2~d2C1!1A~d2C1!212ayyH

2~d1C1!1A~d1C1!212ayyH
, ~24!

and the phase-space area is (1/2p)rIdc. The right plot of
Fig. 6 shows the aspect ratio as a function of the availa
phase area inp m rad. The formula for the bucket size
complicated. However, one can use the condition that
minimum actionI sx,min of the separatrix torus must be larg
than 6e0 of the injected beam to ensure enough phase-sp
area for the injected beam, i.e.,

I sx, min52
d

ayy
S 12AC1

d D 2

.6e0 . ~25!

In summary, the procedure of mismatch compensatio
given as follows. First, we adjustC1 /d to shape the aspec
ratio of an admittance torus, changed/ayy to provide enough
bucket area for the injection beam, and adjust the the ph
of the rf quadrupole to match the orientation of the ellip
with match conditions:AI max/I min5F1 /F2 , and u05(p
22cmm)/nm, wherecmm, F1 , andF2 are mismatch phas
and factors. Here thep in the u0 matching condition arises
from the fact that the major axis of the ellipse is in thec
5p/2 direction.

We should note that the shape of the tori is not exac
elliptical and the aspect ratio depends on the phase-s
area~see Fig. 6!, and hence it is difficult to compensate mi
match fully. In realistic applications, the ratio between t
major and minor axes of a weakly mismatched injection
lipse in normalized phase-space is close to 1, hence we
chooseudu@uC1u, where the aspect ratio is close to a co
stant if the beam emittance is small. We can also choose
aspect ratio matching condition only for the rms actionI rms
5e0/2 ellipse, wheree0 is the rms beam emittance. Ou
simulations show that the final emittance can be well p
served by this simplified matching condition.

In our multiparticle simulations, we use identical mi
match parameters as we have used in the preceding sec
i.e., the admittance ellipse parameters area51.5,b
516.692 m, g50.1947 m21, and the injection ellipse is
defined bya151.4,b1512.6 m, andg150.235 m21. The
mismatch factors areFmm51.087 28,F151.2305, andF2

50.812 68. Multiparticle simulations are carried out wi
10 000 particles in Gaussian distribution at an initial rm
emittance of 6.0p mm mrad. All particles are tracked fo
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3000 turns, and the rf quadrupole is adiabatically turned
from 2001 to 3000 turns. Based on our discussion above,
parameters for the rf quadrupole and the octupole are s
d50.02, ayy52100 m21, andC150.007 464 with a mis-
match angleu051.0594. The octupole was treated as a
calized kick element. The left-top plot in Fig. 7 shows t
initial mismatched beam injected into an accelerator, wh
the 2s phase-space admittance ellipse is also shown.
left-bottom plot of Fig. 7 shows particle distribution in th
phase space at 1000th turn, where one observes filament
of particle distribution. On the other hand, if the rf quadr
pole is properly implemented, the matched ellipse as sho
in the top-right plot of Fig. 7, the resulting emittance is pr
served as shown in the bottom-right plot of Fig. 7. The r
emittance measured at 3000th turn is about 6.48p mm mrad
without mismatch compensation vs 6.01p mm mrad with
mismatch compensation.

A slight increase of emittance arises from mismatch co
pensation using nonlinear Mathieu islands arises from to
deformation. The left plot of Fig. 8 shows theA10s ellipse
at injection and the filamented ellipse at 3000th turn. On
other hand, if the ellipse is mismatched in the phase coo
nate, the resulting phase-space dilution will be large
shown in the right plot of Fig. 8 for the 1s ellipse, where the
initial phase mismatch is 90 °. Results of numerical simu
tions also show that the emittance is not very sensitive to
aspect ratio, but more sensitive to the phase matching co
tion. Since the island tune of the Mathieu resonance islan
highly nonlinear, the resulting emittance increase is limit
Clearly the mismatch compensation with nonlinear Math
island is not as good as that using the linear Mathieu pha
space distortion. The existence of octupole component

FIG. 7. Left plots: the injected beam is mismatched at the t
left plot. Filamentation is clearly shown in the bottom-left plot
the 1000th turn for the mismatched beam. Right plots: using n
linear Mathieu resonance to match the injected beam shown in
top-right plot, we find that the beam emittance is preserved at
3000th turn even in the presence of nonlinear detuning param
The solid lines in this graph show the 2s admittance ellipse. See
the text for parameters used in these simulations.
5-6
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QUADRUPOLE-MODE TRANSFER FUNCTION AND THE . . . PHYSICAL REVIEW E 65 066505
change the aspect ratio and limit the bucket size. Figur
shows the aspect ratio as a function ofC1 for different non-
linear detuning parameterayy .

C. Overcoming spin resonances

The particle spin precesses in synchrotron at a spin t
of Gg per revolution, whereG5(g22)/2 is the Pauli
anomalousg factor andg is the Lorentz relativistic factor
During the polarized beam acceleration, the spin tune m
sweep through many spin depolarizing resonances cause
the nonideal beam closed orbit and the betatron mot
There are a few innovative schemes invented to overco
these spin depolarization resonances@12#. For example, the
rf dipole has been successfully used to generate a cohe
dipole motion and induce spin flip to most particles in t
beam and thus preserve the polarization of the beam for
larized beam acceleration through an intrinsic spin resona
@8#. However, the coherent dipole excitation produces t
nearly overlapping spin resonances, i.e., the intrinsic s
resonance, and the induced spin resonance. Since an rf q
rupole can also induce coherent quadrupole-mode osc

FIG. 8. For nonlinear Mathieu resonance islands, the invar
tori are not perfectly elliptical. However, the emittance growth
limited by the nonlinearity of these tori. The left plot shows that t
A10s ellipse will evolve with filamentation. On the other hand,
the phase of the injection ellipse is mismatched by 90 °, the e
tance dilution is much more severe. The right plot shows the e
lution of the 1s ellipse with an initial phase intentionally set atc
5c01p/2. We observe a much larger beam filamentation. Beca
the Mathieu island is highly nonlinear, the ellipse is tight
wrapped.

FIG. 9. The aspect ratio changes as a function ofC1 at the point
I c5055.031027. d50.002, from the inner to the outerayy

521000,2800,2600,2400,2200 in sequence. The curve end
when the edge of the bucket is reached.
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tion, it would be interesting to examine the capability of t
rf quadrupole on the spin-resonance compensation.

To overcome spin resonance, we work with nonline
Mathieu instability shown in Fig. 1. The beam manipulati
procedure goes as follows. The rf quadrupole is initia
adiabatically turned on to a preset value in a single fix
point region withudu.uC1u, then the modulation tunenm is
adiabatically changed to the conditionudu<uC1u, where the
stable fixed point is bifurcated into two stable fixed points.
this region, the unstable fixed point is located atI ufp50.
Because all particles execute coherent betatron quadrup
mode oscillations, the beam polarization can be maintai
after passing through the spin resonance.

If the parameters of the rf quadrupole are changed a
batically, particles will follow the Hamiltonian tori. Follow-
ing the procedure stated in the preceding paragraph, part
will move into nonlinear Mathieu islands as shown in Fi
10, where the times for the Poincare´ surface of section~snap-
shot in the phase-space! are marked as diamond symbols
Fig. 11 with the corresponding machine parameters use
the multiparticle simulation. The snapshots of the Poinc´
surfaces of the section are taken in the time sequence f
the top-left plot in the first row to the bottom-right plot of th
second row. It seems that there is little emittance increas
the procedure is carried out properly.

However, if we inspect the physics more closely, the p
cedure is intrinsically nonadiabatic, and emittance increas
unavoidable. Figure 12 shows the evolution of the 1s ellipse
of the corresponding multiparticle simulation shown in F
10 at the exact time as shown in Fig. 11. As the phase-sp
is divided into two islands, the phase space ellipse is wo
into two islands. When the procedure is reversed, these
disjoint ellipses can not be restored into the original one, a
the emittance cannot be preserved during this process.

In most applications, the increase of beam emittance
however, reasonably small. The left plot of Fig. 13 shows
rms emittance increment ratio forayy52400 m21 (n),
2600 m21 (L), and 21000 m21 (s) as a function of

t

t-
-

se

FIG. 10. The evolution of bunch distribution as the rf quadr
pole parameters are adiabatically changed. The beam splits into
beamlets, and restore back to one. The normalized phase spa
this plot is defined asZ5A2I cosc and PZ52A2I sinc. Param-
eters used in the numerical simulations at the bottom-left plot
d520.006 256,C150.01, andayy52200 m21. The times corre-
sponding to these Poincare´ surfaces of section are marked
Fig. 11.
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WEIMING GUO AND S. Y. LEE PHYSICAL REVIEW E65 066505
the I sfp by changing thed parameter at a constantC1
50.0004. Note that the emittance growth does not dep
much on theayy parameter, but is a sensitive function
I sfp. The emittance growth would be much larger if theI sfp
goes beyond the second bifurcation region. The right plo
Fig. 13 shows the emittance growth factor as a function
I sfp for a given ayy with different C1 parameter. For a
smallerC1 parameter, one has to set thed parameter near the
bifurcation of three-island region to get the desired act
I sfp. The resulting emittance dilution becomes very lar
because some particles are squeezed out of a bucket
another bucket. The adiabaticity condition is not fulfille
and the emittance dilution is inevitable.

If we assume that the beam distribution around two sta
fixed points of the Mathieu instability region is Gaussian, t
spin flipping rate is given by the ensemble average of be
distribution with the Froissart-Stora formula, i.e.,

Pf

Pi
5

2

11p«0
2/a

expH 2
I sfp

e0

p«0
2/a

11p«0
2/a

J 21, ~26!

FIG. 11. The dashed and solid lines are the resonance proxi
d parameter and the rf quadrupole strengthC1 as functions of time
~in revolution turns!. The Poincare´ surfaces of section plotted in
Figs. 10 and 12 are marked as diamond symbols. The correspon
turn numbers are 0, 1600, 1800, 4000, 4540, and 8000.

FIG. 12. The evolution of the 1s ellipse in the beam manipu
lation where the beam is moved adiabatically through the Math
bifurcation point and back. Parameters used in this simulatio
the bottom-left plot ared520.006 256, C150.01, and ayy

52200 m21.
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whereI sfp is action at stable fixed point,«0 is the spin reso-
nance strength for a particle with rms action1

2 e0, and a
5d(Gg)/du is the acceleration rate.

Using the AGS parameter as our working example,
spin flipping rate is shown in Table I, where we use t
parameters:ayy52200 m21, C150.01, d520.006 26,
and e051.66p mm mrad for the AGS beam to obtainI sfp
518.7 mm mrad. The polarized beam acceleration rate
a54.8631025. On the other hand, we can calculate the p
larization by carrying out ensemble average from the be
distribution. These two results are compared in the third a
the fourth column of Table I. Note that the polarization bas
on Gaussian distribution slightly overestimate the final pol
ization value.

IV. CONCLUSION

In conclusion, we have studied the quadrupole-mo
beam-transfer function and the dynamics of the nonlin
Mathieu instability. We show that the quadrupole-mo
beam-transfer function can be used to measure the beta
tunes, beam emittances, to compensate beam mismatch
ing the injection, and to overcome intrinsic spin resonan
for the polarized beam acceleration.

In the betatron tune measurement, the quadrupole be
transfer function has the advantage of not changing the b
closed orbit, and thus the resulting measurement is less
fected by the effect of feed downs from the higher ord
multipoles. We show clearly that the quadrupole-mo
beam-transfer function is a powerful method to measure
beam emittance nondestructively, and to compensate the
jection mismatch effectively. We, however, find that th
quadrupole-mode beam-transfer function is not as effec

TABLE I. Polarization rate for AGS.

Polf /Poli
nP6nz «0 Gaussian Simulation

8.7 0.0061 20.878 20.765
27.3 0.0051 20.796 20.657
44.7 0.011 20.981 20.940

ity

ing

u
at

FIG. 13. Left: emittance increment ratioe f /e i after moving the
beam toI sfp and back for differentayy . Parameters used in thi
calculation are C150.004 with ayy52400 m21(n),
2600 m21 (L), and 21000 m21 (s), respectively. Right:
emittance increment ratio after moving the beam toI sfp and back for
different parameterC1. Here, we useayy521000 m21, with C1

50.006 (n), 0.004 (L), and 0.002 (s), respectively.
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QUADRUPOLE-MODE TRANSFER FUNCTION AND THE . . . PHYSICAL REVIEW E 65 066505
as the rf dipole method in overcoming the intrinsic spin re
nance in the polarization beam acceleration.

The quadrupole-mode transfer function can also b
powerful tool to measure the machine impedances that c
bunch shape oscillations. In the future, we plan to explore
application in the collective beam instabilities. Correlati
among quadrupole-mode monitors can be used to study
s matrix for the beam transport. The method of the mo
independent analysis can then be used to analyze the hi
dynamical variables. The quadrupole-mode transfer func
~QTF! may also find applications in plasma physics, so
state physics, and other branches of applied physics
controlling and analyzing the stability of these dynamic
systems.

APPENDIX A: RESONANCE STRENGTH OF
HALF INTEGER SIDEBANDS

We considerN rf quadrupoles distributed in an acceler
tor, the Hamiltonian for particle motion is

H~y,y8!5
1

2
y821

1

2
Ky~s!y21(

i 51

N

(
n52`

`
B1~si !, i

2Br

3d~s2si2nC!y2 cos~vm t1u i !, ~A1!

wheres is the longitudinal coordinate along the accelerat
si is the location of the rf quadrupole,B1(si), i is the inte-
grated rf dipole field strength of thei th quadrupole,C is the
circumference of the accelerator,vm is the modulation angu
lar frequency, andu i is the phase of thei th quadrupole.
Transforming to the action-angle coordinates, one obta
@15#

H~Jy ,fy!5nyJy1Jy(
i 51

N

(
n52`

`
B1~si !, iby~si !

2pBr
ejn(s2si )/R

3cos2S fy1my~si !2ny

si

RD cos~vmt1u i !, ~A2!

whereJy ,fy are conjugate action-angle coordinates,R is the
average radius of the accelerator, and we have used

(
n52`

`

d~s2si2nC!5
1

C (
n52`

`

ejn(s2si )/R. ~A3!

Expanding the Hamiltonian in revolution harmonics, w
find

H~Jy ,fy!5nyJy1
Jy

2 (
n52`

`

$An,1,1ej (2fy1nu1vmt)

1An,2,2ej (22fy1nu2vmt)

1An,1,2ej (2fy1nu2vmt)

1An,2,1ej (22fy1nu1vmt)%1h~Jy ,t !, ~A4!

whereu5s/R is the orbiting angle around the accelerat
h(Jy ,t) depends only on the timet andJy , and
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An,6,65 (
n51

N
b iB1~si !l i

8pBr
e2 jnsi /R6 j [2my(si )22nysi /R6u i ]

5 R b~s!B1~s!

8pBr
e2 jns/R6 j [2my(s)22nys/R6u(s)]ds.

~A5!

Note that dfy /du5ny . When the modulation tunenm
5vm/v0 is near a half integer betatron sideband, e.g.,nm
'2ny2n, the stationary phase term in the Hamiltonia
dominates the dynamics, and the Hamiltonian can be
proximated by

H~Jy ,fy!'nyJy1C1Jy cos~2fy2nu2vmt1x!,
~A6!

where we identify the Fourier amplitude asAn,2,1
5C1e2 j x and neglect all nonresonance terms.

APPENDIX B: TORI FOR NONLINEAR
MATHIEU INSTABILITY

The nonlinear Mathieu Hamiltonian can be normalized
follows:

H5DI 2c1I cos 2c1
1

2
I 2, ~B1!

where D5d/axx , c152C1 /axx . For c1>0, invariant
tori are shown in Fig. 1, and forc1,0, the tori are rotated by
90 °. Without loss of generality, we considerc1.0. The
stable fixed points of the the Hamiltonian~B1! are given by

I sfp5H c12D for D<c1,

0 for D<2c1 and D>c1,
~B2!

with c50 andp. The Hamiltonian value of the fixed poin
is Hsfp52 1

2 I sfp
2 .

The unstable fixed points are located at

I ufp5H 2c12D for D<2c1,

0 for 2c1>D>c1,
~B3!

with c5p/2 and 3p/2. These fixed points are shown in Fi
1. The Hamiltonian value of the separatrix torus isHufp

52 1
2 I ufp

2 . The minimum action of the separatrix orbit
I sx, min5(A2D2Ac1)2. Thus the aspect ratio of the separ
trix orbit is given by (A2D2Ac1)/(A2D1Ac1).

APPENDIX C: BOLTZMANN DISTRIBUTION IN BEAM

1. Linear system

A beam in thermal equilibrium obeys the Boltzmann d
tribution r5Ne2H/ET, whereH is the Hamiltonian,N is the
normalization factor andET is the ‘‘thermal energy’’ of the
beam. For a linear Hamiltonian withH5nyJy , the Boltz-
mann distribution becomes Gaussian with

r~Jy ,cy!5
1

2pe0
e2Jy /e0, ~C1!

where e0 is the rms emittance of the beam. Normally, t
thermal energy of the beam distribution in a linear system
5-9
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ET5Ve0, whereV is the tune of the Hamiltonian. When a
rf quadrupole field is applied to the system, the Hamilton
becomesH(c,Jy)5dJy1C1Jy cos 2cy , and the Boltzmann
distribution is

r~Jy ,cy!5
1

2pe0
expF2

dJy1C1Jy cos 2cy

Ad22C1
2e0

G , ~C2!

whereV5Ad22C1
2. The rms beamwidths of this distribu

tion in the normalized coordinates are

sy
25bye0S d1C1

d2C1
D 1/2

, sPy

2 5bye0S d2C1

d1C1
D 1/2

, ~C3!

whereby is the betatron amplitude function at the location
measurement. The QTFb1 can easily be obtained.

2. Nonlinear system

When a nonlinear detuning term is included in the Ham
tonian, the Hamiltonian becomesH(c,Jy)5nyJy1 1

2 ayyJy
2 .

The Boltzmann distribution is

r~Jy ,cy!5N expH 2

nyJ1
1

2
ayyJ

2

ET

J , ~C4!

where we assumeayy.0. The normalization constantN and
the thermal energy are determined by the conditio
*rdJydcy51 and *JyrdJydcy5e0, where e0 is the rms
emittance. From these conditions, we find

ET5nye0

erfcr~u!

2u2@12erfcr~u!#
, ~C5!

N5
1

2pe0

2u2@12erfcr~u!#

~erfcr~u!!2
, ~C6!

where the reduced complementary error function is

erfcr~u![Ap ueu2
erfc~u!

512
1

2u2
1

133

~2u2!2
2

13335

~2u2!3
1•••, ~C7!
r-

c-
r
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with the complementary error function defined as erfc(u)
5(2/Ap)*u

`e2y2
dy, and the parameteru is given by u

5ny /A2ETayy. Since the parameteru depends onET , the
thermal energy should be solved self-consistently from
~C5!. In general,ny is much larger thanA2ETe0 in accelera-
tor, we findET'nye0 andN'1/(2pe0). This is the unper-
turbed Gaussian distribution shown in Eq.~C1!, i.e., the non-
linear detuning does not substantially change the be
distribution.

With an rf quadrupole, the effective Hamiltonian in th
resonance rotating frameis H(c,Jy)5dJy1JyC1 cos 2cy

11
2ayyJy

2 . If the rf quadrupole is adiabatically turned on, th
particle distribution is a function of the Hamiltonian. In pa
ticular, the Boltzmann distribution is

r~Jy ,cy!5N expH 2

dJy1C1Jy cos 2cy1
1

2
ayyJy

2

ET

J .

~C8!

The normalization constantN and the thermal energyET are
determined by the conditions:*rdJydcy51, and
A^Y2&^Py

2&2^Y Py&
25e0, wheree0 is the rms emittance,Y

5A2Jy coscy , Py52A2Jy sincy , and ^•••& is the en-
semble average over the beam distribution. Note that we
working in the parametric space where the beam bunc
slightly perturbed, i.e., the phase space has not entered
bifurcation region of the Mathieu instability. Thus we ca
use the rms emittance to characterize a beam property.

Using the normalization condition, we find

2pNA ET

2ayy
I 0S j

]

]uD S erfcr~u!

u D51, ~C9!

whereu5d/A2ETayy, j5C1 /A2ETayy, erfcr(u) is the
reduced complementary error function of Eq.~C7!, andI 0(x)
is the zeroth order modified Bessel function. Using the r
beam-emittance condition, we obtain
2pN ET

2ayy
AF S ]

]u
1

]

]j D I 0S j
]

]uDerfcr~u!

u GF S ]

]u
2

]

]j D I 0S j
]

]uDerfcr~u!

u G5e0 . ~C10!
-
the
Equations~C9! and~C10! can be used to determine the no
malization conditionN and the thermal energyET of the
Boltzmann distribution. Using the property:I 0(j]/]u)(1/u)
51/Au22j2, one can easily verify that the distribution fun
tion ~C8! reduces to Eq.~C2! in the small detuning paramete
limit with ayy→0.

The quadrupole-mode transfer functionb1 is
b152by~^Y
2&2^Py

2&!

524pbyN
ET

2ayy
F ]

]j
I 0S j

]

]uDerfcr~u!

u G , ~C11!

where variablesu and j are defined in the previous para
graphs. Using the asymptotic expansion, we can obtain
coefficientb1 of the quadrupole beam-transfer function.
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